Guide to First-Order Logic Translations

Hi everybody:

~/

In Wednesday's lecture, we talked aboudt
how to franslafe statements from English
info first—order logic,

— \//

< ™

ranslating info logic is a skill that takes
some practice o get used fo, but once
you gel The hang of if, it's actually

not foo bad - and honestly it can be
a lot of fun:

— e

—

N—

™~

In many ways, learning how to franslate
info first—order logic is like learning

how o program,

\//

P(x)

— ™~

You've gof fhis crazy set of symbols and
Terms with precise meanings..

— \// Q(x, y)

R(x)

S(y)

Vx. (P(x) v R(x) —
| dy. (S(y) A Qx, y))

— ™~

.and the goal is combine them fogether
in a way that says something interesting.

— —

~~

The good news is that, like programming,
fhere are a lot of common patterns that
come up Time and fime again in first—
order logic,

— S~

™~

Once you've gotten the handle on these
patterns and fhe methodology of how to

do a franslation, you'll find that it's
a lot easier to approach logic translations,

. e
o

—

N—

™~

Let's illustrate this with an analogy.

\//

int sumOf(vector<int> elems) {
int result = 0;
for (int 1 = 0; 1 < elems.size(); i1++) {
result += elems[i];

}

return result;

— —~

Take a look at this Tava code.

— —

int sumOf(vector<int> elems) {
int result = 0;
for (int 1 = 0; 1 < elems.size(); i1++) {
result += elems[i];

}

return result;

— —~

This is a method that fakes in an arvay
of infegers and returns the sum of the
elements in that array.

— —

for (int 1 = 0; 1 < elems.size(); i++) {

}

result += elems[i];

Let's focus on this for loop.

— —

for (int 1 = 0; 1 < elems.size(); i++) {

}

result += elems[i];

— —~~

1t you've been programming tor a while,
you can look at this loop and pretfy gquickly
read it as ‘loop over the elements of an

N—

array” loop.,

for (int 1 = 0; 1 < elems.size(); i++) {

}

result += elems[i];

— —~

There's acfually a lot going on in this
loop, though.

N— _---/r__,//

for |[(int 1 = 0;|1 < elems.size(); i1++) {
resutt—+="etems[1];

— —~

There's a variable declaration here
That makes a new variable that fracks
an index..

— —

for (int 1 = 0; 1 < elems.size()j i++) [
result += elems[i];

}

— —~

.There's an increment operator used fo
advance fhat index fthrough the array..

N— \//

for (int 1 =

}

Q; i < elems.size(); i++) {

result +=

eiems[i];

—

e

N—

—~~

selection statement that picks out a

single array element by using the variable

we declared in the loop..

\//

for (-'Lnt 1 =0; 1 <Lelems.size(); :l-'H') {

}

result += elems[TT3

— —~~

.and a fest fo see whether we've read

everything that relies specifically on using

the < operafor and not other operators
like == or <=,

— S~

for (int 1 = 0; 1 < elems.size(); i++) {

}

result += elems[i];

7~When you're first learning to program, N
code like This can seem veally, really
complicated, but when you've been
programming for a while you don't

_fhink about if wm//

for (int 1 = 0; 1 < elems.size(); i++) {

}

result += elems[i];

— —~

It's just “idiomatic® code - you know what
it does by sight even if you don't Think
foo hard about what it means.,

— —

—

—~~

In many ways, first—order logic tormulas

N—

are the same way,

\//

Vp. (Person(p) —

1q. (Person(q) A p # g A

)

Loves(p, q)

—

N—

™~

Here's a firsT—order logic tformula

from lecture, It objectively has a lof

of symbols strewn throughout if,

\//

Vp. (Person(p) —

dq. (Person(q) A p # q A

)

Loves(p, q)

—

N—

™~

However, once you've gotfen the hang

of the idiomatic first—order logic

patferns, you'll see that this actually

isn't fthat bad:

\//

Vp. (Person(p) —
1q. (Person(q) A p # g A
Loves(p, q)
) " 1F you tried to build tuis Formula)

) completely from scratch, it would be
really challenging, However, it you know The
patterns and how to string them together,

This is a very nafural formula to write.
\ : \//

Vp. (Person(p) —

1q. (Person(q) A p # g A

)

Loves(p, q)

—

~~

his quide is designed to feach you

what These common patierns are, how

fo

N—

combine them fogether, and how fo
use them fo translate complicated

sTaTemest.\//

Vp. (Person(p) —
1q. (Person(q) A p # g A
Loves(p, q)
)

Think of it as a crash course in
first—order logic programming,

Vp. (Person(p) —
dq. (Person(q) A p # q A
Loves(p, q)
)

[With that said, let's get sfarfed:

" Most of the fime, when you're wviTimq\

sfatements in first—order logic, you'll
be making a stafement of the form
‘every X has properTy Y* or ‘some X has

N property \/\//

—
St

N—

™~

afements of these (usually) fall into
one ot four fundamental types of
statements,

—

“All Ps are Qs.”

“No Ps are Qs.”

“Some Ps are Qs.”

“Some Ps aren't Qs.”

—

N—

These four classes ot stafements are called TN
Aristotelian Forms, since they were first described
by Aristotle in his work *Prior Analyfics” .. though
you don't need to know that unless you want to

A

show off at cocktail parties, " I/

——

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

On Friday, we saw how fo franslate fhese statements info
first—order logic. Here's what we came up with,

In

a—

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x)

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

) Ix. (P(x) A ~Q(x))

—

paired

N—

™~

In lecture we spent fime talking about why V gets
with = and why 3 getfs paired with A, We already talked

in lecture about why this is, so we're not going to review it
here, Affer all, our goal is To see how fo use these

patferns, not how to derive them.,

//

a—

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) - Q(x)) Ix. (P(x) A Q(x))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) » 7Q(x)) Ix. (P(x) A = Q(Xx))
/Howevev, you absolutely should memorize these paﬁevms.\

They've like the ‘loop over an array” for loop pattern in
Python, C, or C++ — they come up frequently and you
ultimately want fo get to the point where you can easily read

— and write them as a unitf, I/

a—

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Now, let's see how we can use these four stafements
as building blocks tor constructing larger statements,

In

a—

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

|:1

magine that we have these predicates available fo us
To use..

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A = Q(Xx))

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

Every orange cat is fluffy.

~and that we want to translate this statement into
first—order logic.

J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Every orange cat is fluffy.

4)
Available Predicates: Let's see how we can use these formulas to help
out our translation,
Orange(x)
Cat(x)
Fluffy(x) ~
\ /

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Every orange cat is fluffy.

-

Available Predicates

o

\
: First, what kind ot statement is this?
Orange(x)

Cat(x)
Fluffy(x) ~

J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Every orange cat is fluffy.

4 . .) It seems fo look a lot like this one - we're saying that
Available Predicates: | .
all objects of one kind (orange cafs) are also of
Orange(x) another kind (flutfy).
Cat(x)
Fluffy(x) ~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Every orange cat is fluffy.

a8 Y
Available Predicates: Based on that.
Orange(x)
Cat(x)
Fluffy(x) y

o

J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (x is an orange cat — x is fluffy)

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

.we can start adding in a bit of structure to our
first—order logic formula,

J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (x is an orange cat — x is fluffy)

/Available Predicates:\ From here, our goal is To keep replacing the remaining

English statements in the formula with something in
Orange(x) firsT—order logic that says fhe same thing.
Cat(x)
Fluffy(x) ~

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (x is an orange cat — x is fluffy)

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

For example, this part of the formula is easy fo
Translate..

J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (x is an orange cat — x is fluffy)

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

.because we have a predicate That directly expresses
This idea

J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”

Vx. (P(x) » =Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (x is an orange cat = Fluffy(x))

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

J

[

So let's go and snap that predicate in there,
Progress:

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (x is an orange cat = Fluffy(x))

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

So what about the rest of the formula? How do we
express The idea Thal x is an orange cat?

J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (x is an orange cat = Fluffy(x))

/Available Predicates-\ well, we have two independent predicates - orange(x)
' and Caf(x) - thal each express a part of the idea.
Orange(x) How can we combine them together?
Cat(x)
Fluffy(x) ~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (x is an orange cat = Fluffy(x))

-

Available Predicates

o

\
; Lef's begin by seeing how not to do this,
Orange(x)

Cat(x)
Fluffy(x) ~

J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (x is an orange cat = Fluffy(x))

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

I'm going o pul up our trusty warning indicators fo
show that what we're about to do is a really bad
idea,

J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (Orange(Cat(x)) = Fluffy(x))

-

o

doesn't work,

\
Available Predicates: |: Here's something common we see people do That

Orange(x)
Cat(x)
Fluffy(x) ~

J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”

Vx. (P(x) » =Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (Orange(Cat(x)) = Fluffy(x))

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

§

his superficially looks like it works correctly - it seems
like it's saying that x is a cat that's orange.

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (Orange(Cat(x)) = Fluffy(x))

4 . .) The problem is that it's not synfactically valid - it's the
Available Predicates: . \ . . o
sorT of mistake that would be a ‘compile=Time error” in

Orange(x) many languages.
Cat(x)
Fluffy(x) ~4

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (Orange(Cat(x)) = Fluffy(x))

-

Available Predicates-\ The veason This doesn't work is that Orange and Cat
' are predicates - they fake in objects and produce either
Orange(x) frue or talse,
Cat(x)
Fluffy(x) ~
/

o

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A = Q(Xx))

Vx. (Orange(Cat(x)) = Fluffy(x))

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

bool

This means that the statement Cat(x) evaluates to
either *true” or *talse.” Infuitively, it takes in an
object and refurns a boolean,

J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (Orange(Cat(x)) = Fluffy(x))

bool
/Available Predicates-\ The problem is thal orange expects that it will fake in
' an object and refurn a boolean - but it's not being
Orange(x) provided an object as input:
Cat(x)
Fluffy(x) ~/

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”

Vx. (P(x) » =Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (Orange(Cat(x)) = Fluffy(x))

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

J

bool

[

This is the first—order logic equivalent of a type
ervor,

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (Orange(Cat(x)) = Fluffy(x))

bool

4 , ,) So even though this might at first glance seem right,
Available Predicates: . .
iT's not actually legal. so we're going 1o have to

Orange(x) find some ofher way of expressing This idear
Cat(x)
Fluffy(x) —

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (x is an orange cat = Fluffy(x))

-

Available Predicates

o

\
: Let's revert back to whal we had betore.
Orange(x)

Cat(x)
Fluffy(x) ~

J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (x is an orange cat = Fluffy(x))

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

|:w

e've Trying To express the idea that x is an orange
cat,

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

Vx. (x is orange and x is a cat = Fluffy(x))

1t you think about it, fhat's fhe same as saying that
x is an orange and thal x is a caf.

J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

Vx. (x is orange and x is a cat = Fluffy(x))

E

his is something that's a lot easier o translate info
first—order logic.

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (x is orange A x is a cat = Fluffy(x))

connective,

4)
Available Predicates: |: The ‘and,” for example, just becomes a a

Orange(x)
Cat(x)
Fluffy(x) ~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (Orange(x) A Cat(x) — Fluffy(x))

/Available Predicates-\ And, given the predicates we have available, we can
' franslate The left and right halves of that expression

Orange(x) divectly info first—order logic.,
Cat(x)
Fluffy(x) ~

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (Orange(x) A Cat(x) — Fluffy(x))

-

Available Predicates

o

\
Orange(x)

Tadar We'vre dove.

Cat(x)
Fluffy(x)

J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (Orange(x) A Cat(x) — Fluffy(x))

Although this wasn'1 a parficularly complicated examPD
4 N\ especially compared fo what we did in class The other
Available Predicates: day, 1 do think it's helpful to see where it comes from,
Orange(x) since we walked through it step—by—step.
Cat(x)
Fluffy(x) ~/

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

-

~

Available Predicates:

o

Orange(x)
Cat(x)
Fluffy(x)

Eopefu\\% That wasn't foo bad: Let's go and do amoﬂqul
one,

/

——

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A = Q(Xx))

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

—

N

Let's change our available set of predicates so that we
can talk about whether something's a corgi, whether
something's a person, and whether one fhing x

loves another thing v,

J

N—

//

——

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

There's a corgi that loves everyone.

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

With fhese predicates, lef's see how to translate
this statement info first—order logic,

J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

There's a corgi that loves everyone.

4 I
Available Predicates: Again, we can starf off by asking what kind of statement
, This is, What exactly is it That werre falking about here?
Corgi(x)
Person(x)
Loves(x, y) ~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

There's a corgi that loves everyone.

4 . .) Fundamentally, we're saying that somewhere out fhere in
Available Predicates: . S . .
the vast, magical world we live in, there is a corgi fhat

Corgi(x) has some specific sef of properties,
Person(x)
Loves(x, y) ~

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

There's a corgi that loves everyone.

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

(Specifically, the corgi has fThe property that it loves
everyone!)

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

There's a corgi that loves everyone.

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

That statement looks a lot like this one over here - we're
saying that some corgis happen 1o love everyone.

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

dx. (x is a corgi N x loves everyone)

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

We'll partially translate our statement by using that
general pattern,

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

dx. (x is a corgi N x loves everyone)

4 . .) As betore, we'll confinue to make incremental progress
Available Predicates:
Translating bits and pieces of this formula unfil we

Corgi(x) arvive at the final result,
Person(x)
Loves(x, y) ~

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

3x. (Corgi(x) N x loves everyone)

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

For example, we can directly express the idea that x is
a corgi, so let's go do that,

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

3x. (Corgi(x) N x loves everyone)

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

Now, we have fTo Think about how to translate the
sfatement *x loves everyone,”

J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

3x. (Corgi(x) N x loves everyone)

4 . .) It's not immediately clear how fo do this given the
Available Predicates: .
four general forms we have above, This means that

Corgi(x) we need fo think a bif before we move on.

Person(x)
Loves(x, y) —~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

3x. (Corgi(x) N x loves everyone)

4 I
Available Predicates: When franslating statements like these, it sometimes helps
, fo introduce variables represenfing names tor things.
Corgi(x)
Person(x)
Loves(x, y) ~

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

dx. (Corgi(x) A x loves every person y)

So, tor example, we could rewrite *x loves everyone® fo
‘v loves every person y,”

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

dx. (Corgi(x) A x loves every person y)

e ™ — . , —
Available Predicates: This is suggesting That we're probably qomq To wa.vﬁ fo
use one of fhe femplates on the lett, since this

Corgi(x) statement says something about every person y,
Person(x)
Loves(x, y) —

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

dx. (Corgi(x) A x loves every person y)

To see exactly how this mafches, we might want 1o
rewrite This blue part to tocus more on what we're
saying about y,

J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

dx. (Corgi(x) A every persony is loved by x)

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

(ne 1ol

hen I was learning how 1o write, I remember being
that the passive voice should not be used, Buf somefimes,
like in this case, if's actually helpful for exposing fhe
sTructure of what's going on - every person ¢ is

J

loved by x.
N //

——

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

dx. (Corgi(x) A every persony is loved by x)

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

—

J

N—

—~

It we write things this way, it becomes a bif clearer

That This stfatement matfches this first general

pattern, Let's go and apply it:

——

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

3x. (Corgi(x) A
Vy. (v is a person = y is loved by x)
)

4 I
Available Predicates:
Tada!
Corgi(x) |: :l
Person(x) /
Loves(x, y) —

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

3x. (Corgi(x) A

)

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

Vy. (v is a person = y is loved by x)

q\\ notice that I've written this part of the fovmu\\a

on the next line and indenfed it, It's extremely useful
to structure the formula this way - it shows what's nested

inside of what and clarifies The scope of the variables

involved, While it's not strictly required that you do

@ in your own Tfranslations, we highly veoomm/ewol)

——

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

3x. (Corgi(x) A
Vy. (v is a person = y is loved by x)
)

/Available Predicates-\ Now fhal we're here, we can do the finishing Touches
' of franslating this statement by replacing these blue
Corgi(x) parfs with predicates:

Person(x)
Loves(x, y) —~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

3x. (Corgi(x) A
Vy. (Person(y) = Loves(x, y))
)

a8 | I
Available Predicates: That gives This, our final sfatement,

Corgi(x)
Person(x)
Loves(x, y) —~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

3x. (Corgi(x) A
Vy. (Person(y) = Loves(x, y))
)

. i
Available Predicates: And hey: We're done:

Corgi(x)
Person(x)
Loves(x, y) —~

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”

Vx. (P(x) » =Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A = Q(Xx))

3x. (Corgi(x) A

)

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

J

Vy. (Person(y) = Loves(x, y))

[

Before we move on, let's pause and look at fhe
formula that we came up with,

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

3x. (Corgi(x) A
Vy. (Person(y) = Loves(x, y))

)

-

\
Available Predicates:
Corgi(x)
Person(x)

o

Loves(x, y)

/Jusf as we can use the above patferns to Tvaws\afe\

the original statement into logic, we can use those

same pafterns to franslate this out ot logic and back
info English (or any language ot your choice,

J

" reallyr) //

——

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

3x. (Corgi(x) A

)

-

Available Predicates:
Corgi(x)

o

~

form ‘some Ps are Qs”.

This first parf is the start of a statement of the :l

Person(x)
Loves(x, y)

J

/

——

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A = Q(Xx))

3x. (Corgi(x) A
)

-

\
Available Predicates:
Corgi(x)
Person(x)
Loves(x, y)

o

There is a corgi...

So we can starf our Translation like this, :l

J

/

——

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”

Vx. (P(x) » =Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

3x. (Corgi(x) A
Vy. (Person(y))

)

-

\
Available Predicates:
Corgi(x)
Person(x)

o

Loves(x, y)

J

There is a corgi...

_

the form ‘all Ps are Qs”.

This parT of the stafement starfs off a sfatement of:l

/

——

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))
3x. (Corgi(x) A
Vy. (Person(y))
)
There is a corgi
that every person...
4 I
Available Predicates:
|: .so0 we can confinue our Translafion like this, :l
Corgi(x)
Person(x) /
Loves(x, y) —~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

3x. (Corgi(x) A
Vy. (Person(y) = Loves(x, y))

)

-

\
Available Predicates:
Corgi(x)
Person(x)
Loves(x, y)

o

J

There is a corgi
that every person
is loved by.

|:\'he last bit is a predicate, so we can just read it O‘FF]

/

——

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

3x. (Corgi(x) A
Vy. (Person(y) = Loves(x, y))

)
There is a corgi
that every person
is loved by.
4)

Available Predicates: We now have a (grammaftically awkward) but correct
Corgi(x) translation of our logic statement back into English,
Person(x) /
Loves(x, y) —~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

3x. (Corgi(x) A
Vy. (Person(y) = Loves(x, y))
)

“There is a corgi that
loves everyone.”

e)
Available Predicates: E\li’(\n a bit of English rewrifing, we can get back fo ouj

Corgi(x) original statement, Niffyr Looks like we gof it right:

Person(x) /
Loves(x, y) —~

- J

“All Ps are Qs.”
Vx. (P(x) » Q(x))

“No Ps are Qs.”
Vx. (P(x) » =Q(x))

“Some Ps are Qs.”

dx. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A " QX))

-

~

Available Predicates: Let's fry another franslation, just fo get some more
Corgi(x) practice with this skill,

o

Loves(x, y)

Person(x)

J

/

4

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Everybody loves at least one corgi.

a8 | I
Avatlable Predicates: How might we translate this statement?

Corgi(x)
Person(x)
Loves(x, y) —~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Everybody loves at least one corgi.

4 , ,) Before we walk through this one, why don'f you fry
Available Predicates: . . ‘ .
Translating this one on your own? Try using a similar

Corgi(x) thought process to the one we used earlier,

Person(x)
Loves(x, y) ~/

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

Everybody loves at least one corgi.

Did you actually try this? Because if you didn't, you
really should, Like, seriously,

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

Everybody loves at least one corgi.

So you Translated the statement on your own? Great:
Let's do this one fogether,

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A = Q(Xx))

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

Everybody loves at least one corgi.

First, we need fo start off by fhinking about what
exactly this statement says.

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

Everybody loves at least one corgi.

This says ‘if you pick any person, you'll find That
There's some corgi that they like,”

J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Everybody loves at least one corgi.

o 0
Available Predicates: That's a statement of this type.

Corgi(x)
Person(x)
Loves(x, y) —~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (x is a person — X loves at least one corgi)

-

Available Predicates:

o

~

.50 we can make some inifial progress like This,

Corgi(x)
Person(x)
Loves(x, y) —~

J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (Person(x) — x loves at least one corgi)

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

From here, we can translate the *x is a person’ part
directly info first—order logic.

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (Person(x) -
X loves at least one corgi

)
4)
Available Predicates: Now, we have to figure out how to franslafe that
last T,

Corgi(x) ast b

Person(x)

Loves(x, y) ~/
\ %

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (Person(x) —

)

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

X loves at least one corgi y

As before, let's introduce more variables so fthat we
have names for things.

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (Person(x) —
there is a corgi y that is loved by x

)
4 I
Available Predicates: And, as before, let's fiddle around with the verb
, structure to make clearer what kind of statement fthis is.
Corgi(x)
Person(x)
Loves(x, y) ~/

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

3x. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A = Q(Xx))

Vx. (Person(x) —

)

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

there is a corgi y that is loved by x

From here it's (hopefully) a bit clearer that this is
a ‘some P's are Q's” statement - some corgis
happen to be loved by person x,

J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (Person(x) —

)

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

Jy. (yis acorgi A yis loved by x)

We can make more progress on our Translation by
using that femplate,

J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Vx. (Person(x) —

)

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

Jy. (yis acorgi A yis loved by x)

AT this point we just need fo put in the finishing touches
and rewrife the blue parts using predicates..

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (Person(x) —
dy. (Corgi(y) A Loves(x, y))
)

o h
Available Predicates: ike thist Tada: We're done.

Corgi(x)
Person(x)
Loves(x, y) —~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) - Q(x)) Ix. (P(x) A Q(x))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))
3x. (Corgi(x) A Vx. (Person(x) —
Vy. (Person(y) = Loves(x, y)) dy. (Corgi(y) A Loves(x, y))
))

Translated side—by—side with one another,

4 I
Available Predicates: |: 11's inferesting to put the two statements we

Corgi(x)
Person(x)
Loves(x, y) —~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) - Q(x)) Ix. (P(x) A Q(x))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))
3x. (Corgi(x) A Vx. (Person(x) —
Vy. (Person(y) = Loves(x, y)) dy. (Corgi(y) A Loves(x, y))
))

they've clearly different in a number of ways,

4)
Available Predicates: |:These stafements have a lof of similarities, though

Corgi(x)
Person(x)
Loves(x, y) —~

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Jx.
Vy.

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

Vx.
Jy.

— ™~

One major difference between these two is the order
in which the quantifiers appear. The first has fhem
in The order 3V, and fhe second has Them in the order

J

Vi,

N— //

ey

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A = Q(Xx))

Jx.
Vy.

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

Vx.
Jy.

N

Something I'd veally like To stress is that, when we
did these franslations, we didn't just magically *quess”
that we needed those particular quanfifiers and that they

J

N—

would be in these orders.

//

——

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A 7Q(x))

Jx.
Vy.

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

Vx.
Jy.

—

™~

Instead, we started off with the original sfatement and
incrementally franslafed it fop—down, only adding in the

J

N—

guantifiers when we needed fhem,

//

ey

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Jx.
Vy.

-

~

Available Predicates:

o

Corgi(x)
Person(x)
Loves(x, y)

Vx.
Jy.

— —~~

ne of the biggest mistakes we see people make when
learning first—order logic for the first time is frying
fo write the whole statement in a single go, adding in
guantifiers somewhat randomly to try to get things to

J

work,
N— //

——

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Jx. VXx.
Vy. Jy.
4 I
Available Predicates: Don't do that: It's veally, rveally hard fo get right on
rst ey
Corgi(x) G
Person(x)
Loves(x, y) ~/

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) - Q(x)) Ix. (P(x) A Q(x))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) » = Q(x)) Ix. (P(x) A =Q(x))
Jx. Vx.
Vy. Jy.
4) Instead, use the approach we outlined here, Work slowly,

avdilable Bregicates: going one step at a fime, and only adding in gquantifiers

Corgi(x) when you need Them,
Person(x)
Loves(x, y) ~

- J

“All Ps are Qs.”
Vx. (P(x) - Q(x))

“No Ps are Qs.”
Vx. (P(x) » = Q(x))

“Some Ps are Qs.”

Ix. (P(x) A Q(x))

“Some Ps aren't Qs.”

Ix. (P(x) A =Q(x))

Jx.
Vy.

Vx.
Jy.

/ A
Available Predicates: 1f
Corgi(x)

you do, you're a lot less likely to make mistakes.

Person(x)
Loves(x, y)

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) - Q(x)) Ix. (P(x) A Q(x))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) » = Q(x)) Ix. (P(x) A 7Q(x))
Jx. Vx.
Vy. Jy.
4) Going back to our programming analogy, you can wrife

Available Predicates: a lot of similar programs that all use it statements and

Corgi(x) for loops.
Person(x)
Loves(x, y) —~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))
Jx. Vx.
Vy. Jy.
4) However, you rarely write programs by just fThrowing a

Available Predicates: bunch of loops and if stafements randomly and hoping

Corgi(x) that i1l work - because chances are, it won'f,

Person(x)
Loves(x, y) —~

- J

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) - Q(x)) Ix. (P(x) A Q(x))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) = =Q(x)) Ix. (P(x) A ~Q(X))
Jx. Vx.
Vy. Jy.
4) Instead ide | ’
, , . , you work from the oufside in - add in a loop
FIIGIDNS IO o when you need it, and if you need to nest an if
Corgi(x) statement, then you add it when you need if,
Person(x)

Loves(x, y) —~

- J

5o at this point we've gotten some pracfice with the
fundamentals of franslation. Pretty much everything else
we'll be doing is just more advanced applications of these

— concepls, //

—

N

/To give you a better sense of how These concepts
scale up To more complicated examples, let s walk through
some more complex statements and how o translate them.

Along the way, you'll see a bunch of niffy tricks and

\ insights that will help you out going fovwa/vol./

ey

Lef's start off by seeing how fo falk about pairs of
Things.,

/

ey

int sumOf(vector<int> elems) {
int result = 0;
for (int 1 = 0; 1 < elems.size(); i++) {
result += elems[i];

}

return result;

Earlier, we Talked about this TJava code for iferating
over all the elements of an array,

/

ey

int sumOf(vector<int> elems) {
int result = 0;
for (int 1 = 0; 1 < elems.size(); i++) {
result += elems[i];
}

return result;

}

Lef's imagine we want 1o wrife a different piece of code

that iterates over all pairs of elements in the array.
How might we do fhat?

SN p——

—

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

~ : , N
Here's one possible option using fThe venerable

double—=tor—loop pattern that you've probably gotten
fo know and love,

SN p——

—

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

As with the regular ‘loop over the elements of an aw?
loop, the double=tor—loop is a programming idiom, Once
you've seen i1 enough Times, you just know what it means
. and don't have to think tfoo much abouT/iT./

—d

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

~ TN
One inferesting detail about the double—tor—loop paftern

is thal putting one loop inside of another yields a way
of iterafing over pairs of things.

N— //

—d

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

~ SN

Turns out, we can adapf This idea to work in first—order
logic as well:

N— //

—d

for (int 1 =

-

Available Predicates:

-

Pancake(x)
TasteSimilar(x, y)

~

J

vold printPairsIn(vector<int> elems) {

0; 1 < elems.size(); i1++) {

for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

~

N—

—

Lef's imagine that we have these two predicates, one
of which says something is a pancake, and one of which

says that two things taste similar,

//

—

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Any two pancakes taste similar

~ N

e I How might we translate this statement info first—order
Available Predicates: logic?

Pancake(x) N—
TasteSimilar(x, y) //

- J

for (int 1 =
for (int

4)

Available Predicates:

Pancake(x)
TasteSimilar(x, y)

- J

vold printPairsIn(vector<int> elems) {

0; 1 < elems.size(); i1++) {

j=0;

j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Any two pancakes taste similar

~

N—

—
This statement is different from our earlier one

because it talks about any possible pair of objects
rather than any possible individual object,

//

—

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Any two pancakes taste similar

~ N
e ™ The good news is that we can translate it in a way
Available Predicates: that bears a sfrong resemblance to the above Java
code with a double for loop,

Pancake(x) N—
TasteSimilar(x, y) //

- J

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Any two pancakes taste similar

4)

Available Predicates: Specifically, we'll proceed as follows,

Pancake(x) N—
TasteSimilar(x, y) //

- J

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Any two pancakes x and y taste similar

~ N

e . . I First, let's infroduce some new variables info our
Available Predicates: English so fhat we have names for things.

Pancake(x) N—
TasteSimilar(x, y) //

- J

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Any pancake x tastes similar to any pancake y

~ N
e ™ We can then rejigger the English statement so that it
Available Predicates: looks like this, Atter all, this means the same Thing
as whal we starfed with,

Pancake(x) N—
TasteSimilar(x, y) //

- J

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Any pancake x tastes similar to any pancake y

~ N
e ™ Now, we can Think back to our Aristofelean form femplates
Available Predicates: That we just gof veally tamiliar with and see how o
apply Them here,

Pancake(x) N—
TasteSimilar(x, y) //

- J

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Any pancake x tastes similar to any pancake y

~ N

a4 I Since this statement says something fo the effect of
Available Predicates:

‘any pancake x has some special property..”
Pancake(x) N
TasteSimilar(x, y) //

- J

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Vx. (Pancake(x) —
X tastes similar to any pancake y

)
a8 | I
Available Predicates: . we can begin franslating it into logic like This,
Pancake(x)
TasteSimilar(x, y) w4

- J

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Vx. (Pancake(x) —
X tastes similar to any pancake y

)
4 I | | |
Available Predicates: Now, let's look at that middle porfion and see if we
can franslate it as well,
Pancake(x)
TasteSimilar(x, y) S

- J

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Vx. (Pancake(x) —
any pancake y tastes similar to x

)
4) | | | |
Available Predicates: Reordering the statement gives us this To work with,
which exposes a bit more structure,
Pancake(x)
TasteSimilar(x, y) w4

- J

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Vx. (Pancake(x) —
Vy. (Pancake(y) —
X tastes similar to y
)

4)

Available Predicates: We can then rewrife it like fhis,

Pancake(x)

TasteSimilar(x, y) /

- J

-

Available Predicates:

-

Pancake(x)
TasteSimilar(x, y)

~

)

vold printPairsIn(vector<int> elems) {
for (int 1 =

0; 1 < elems.size(); i1++) {

for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Vx. (Pancake(x) —
Vy. (Pancake(y) —
X tastes similar to y
)

As a final step, we'll franslate that innermost portion,

vold printPairsIn(vector<int> elems) {
for (int 1 = 0; 1 < elems.size(); i1++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Vx. (Pancake(x) —
Vy. (Pancake(y) —
TasteSimilar(x, y)

)
)
4)
Available Predicates: |: Tada: We've done.
Pancake(x)
TasteSimilar(x, y) /

- J

for (int i
for (int j

-

~

Available Predicates:

-

Pancake(x)
TasteSimilar(x, y)

)

vold printPairsIn(vector<int> elems) {
0; 1 < elems.size(); i1++) {

= 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Vx. (Pancake(x) —
Vy. (Pancake(y) —
TasteSimilar(x, y)
)

We now have a statement that says thal any fwo pancakes
faste similar, (We can debate whether this is frue or not
in a separate quide.,)

/

—

-

Available Predicates:

-

Pancake(x)
TasteSimilar(x, y)

~

)

vold printPairsIn(vector<int> elems) {
for (int 1 =

0; 1 < elems.size(); i1++) {

for (int j = 0; j < elems.size(); j++) {

cout << elems[i1] << ", " << elems[j] << endl;

Vx. (Pancake(x) —
Vy. (Pancake(y) —
TasteSimilar(x, y)
)

Hopefully, you can nofice fhat fhere's a bit of a parallel
fo the Java double for loop given above,

/

—

for (int 1 = 0; 1 < elems.size(); i++) {
for (int j = 0; j < elems.size(); j++) {

cout << elems[i] << ", " << elems[j] << endl;

}

Vx. (Pancake(x) —
Vy. (Pancake(y) —
TasteSimilar(x, y)
)

1 you think as quanfifiers as a sort of ‘loop over)
everything” - which isn't fthat tar from the truth - then

4 . | I the program and the formula both say ‘loop over one
Available Predicates: thing, then loop over another, then do something with
Pancake(x) N The pair.”
TasteSimilar(x, y) —

- J

for (int 1 =

-~

Available Predicates:

-

Pancake(x)
TasteSimilar(x, y)

~

J

0; 1 < elems.size(); i++) {

for (int j = 0; j < elems.size(); j++) {

}

cout << elems[i1] << ", " << elems[j] << endl;

Vx. (Pancake(x) —
Vy. (Pancake(y) -

)

TasteSimilar(x, y)

~
S

d

N—

. . . \
o it you ever need fo write something where you're

ealing with a pair of things, you now know how: You
can just write Two independent quantifiers like this,

//

—

1T furns out, though, thal there's another way fo
4 N\ express This concept that some people find a bit easier
Available Predicates: to wrap their head around. For complefeness, lef's

Pancake(x) — guickly Talk about this before moving on.
TasteSimilar(x, y) //

- /

Any two pancakes taste similar

4)

Available Predicates: Let's go back fo our original statement,

Pancake(x)
TasteSimilar(x, y)

- J

Any two pancakes x and y taste similar

As before, let's add in some variables names so that
4 N\ we have ways of keeping our pancakes sfraight,
Available Predicates: (Ever gotten your pancakes confused? It's a horrible

Pancake(x) . way To start off your day.)
TasteSimilar(x, y) //

- J

Any two pancakes x and y taste similar

4)

Available Predicates:

Pancake(x)
TasteSimilar(x, y)

~

. . . . \
The idea is that we know that, at fhis point, we've

going to be reasoning about a pair of pancakes, and

- J

N—

we're going To reason aboul them right now.,

//

ey

Any two pancakes x and y taste similar

-

~

Available Predicates:

-

Pancake(x)
TasteSimilar(x, y)

Theretore, rather than introducing two gquantifiers at
ditferent points in fime, we'll infroduce both quantifiers

)

al the same Time..

N— "

ey

Vx. Yy. (x and y are pancakes —
X and y taste similar
)

4)

Available Predicates:
Jlike this,

Pancake(x)

TasteSimilar(x, y)

- J

Vx. Yy. (x and y are pancakes —

)

-

~

Available Predicates:

-

Pancake(x)
TasteSimilar(x, y)

)

X and y taste similar

/ \
Generally speaking, it is nof a good idea to infroduce

guantifiers for variables all at once, but in the special
case of working with pairs, it's perfectly safe,

N— "

ey

Vx. Yy. (x and y are pancakes —
X and y taste similar
)

4)

Available Predicates: So now all we have to do is franslate each of the

remaining English parfs into English,
Pancake(x)

TasteSimilar(x, y)

- J

Vx. Vy. (Pancake(x) A Pancake(y) -
TasteSimilar(x, y)
)

4)

Available Predicates:
Here's one way To do this,
Pancake(x)

TasteSimilar(x, y) /

- J

Vx. Vy. (Pancake(x) A Pancake(y) -

)

-

~

Available Predicates:

-

Pancake(x)
TasteSimilar(x, y)

)

TasteSimilar(x, y)

And we're doner This is a totally valid way to franslate
our original statement into first—order logic.

Vx. (Pancake(x) — Vx. Vy. (Pancake(x) A Pancake(y) —
Vy. (Pancake(y) - TasteSimilar(x, y)
TasteSimilar(x, y))
)

4 I
Available Predicates: |: It's inferesting, and useful, fo puf fhis second

Translation side—by—side with our original one,
Pancake(x)

TasteSimilar(x, y)

- J

Vx. (Pancake(x) — Vx. Vy. (Pancake(x) A Pancake(y) —
Vy. (Pancake(y) = TasteSimilar(x, y)
TasteSimilar(x, y))

)
)
4 I |
Available Predicates: These statements look pretfy different, but they say
exactly the same thing, Both are pertectly correct,
Pancake(x)

TasteSimilar(x, y)

- J

Vx. (Pancake(x) — Vx. Vy. (Pancake(x) A Pancake(y) —
Vy. (Pancake(y) - TasteSimilar(x, y)
TasteSimilar(x, y))
)

deep going on here,
Pancake(x)

TasteSimilar(x, y)

- J

4)
Available Predicates: |: There's acTua\\% something pretty cool and pretty

Pancake(x) = Pancake(x) N Pancake(y) —
Pancake(y) - TasteSimilar(x, y)
TasteSimilar(x, y)

4)

Available Predicates: For now, ignore the quanfifiers, Just look at the

predicates and how they relate,
Pancake(x)

TasteSimilar(x, y)

- J

Pancake(x) = Pancake(x) N Pancake(y) —
Pancake(y) - TasteSimilar(x, y)
TasteSimilar(x, y)

A-B-C ANB-C
4) " |
Available Predicates: Abstractly, here are the fwo propositional logic patierns
used in The two statements.
Pancake(x)
TasteSimilar(x, y) /

——

- J

Pancake(x) —

Pancake(y) -
TasteSimilar(x, y)

A-B-C

-

~

Available Predicates:

-

Pancake(x)
TasteSimilar(x, y)

Pancake(x) N Pancake(y) —
TasteSimilar(x, y)

is equivalentto A N B - C

—

TN

These statements are actually logically equivalent fo one
another, (If you've checked out the Guide fo Negafing

)

N—

Formulas, you'll see a cool way to derive thist)

//

——

Pancake(x) = Pancake(x) N Pancake(y) —
Pancake(y) - TasteSimilar(x, y)
TasteSimilar(x, y)

A-B-C is equivalentto A N B = C

" This pattern — changing a chain of implications info
a single implication and a lof of ANDs and vice—versa -

a4 I is somefimes called Currying and has applications in
Available Predicates: functional programming. (This is a total aside. you're not
Pancake(x) N expected 1o know this,)
TasteSimilar(x, y) J/

- J

Pancake(x) = Pancake(x) N Pancake(y) —
Pancake(y) - TasteSimilar(x, y)
TasteSimilar(x, y)

A-B-C is equivalentto A N B = C

/\)\Timafe\%, what's imporfant is thal you anderstand N
that both of these statements say exactly the same

a4 I thing and that you end up comfortable working with
Available Predicates:

both of them, Feel free to use whichever one you like

Pancake(x) _"ore but make sure you can quickly ivﬁevpvew

TasteSimilar(x, y)

- J

——

Lef's do another example of where we might want fo
go and work with pairs,

Vs

ey

4)

Available Predicates:
Let's switch our predicates from pancakes fo people,
Person(x)

Knows(x, y) S
- /

Everyone knows at least two people

-

~

Available Predicates:

o

Person(x)
Knows(x, y)

How might we franslate this statement into first—order
logic?

at least two people

~
e ™\ well, it seems like there's going fo be a pair involved
Available Predicates: here somewhere, since There's something about
*at least two people” here,

Person(x)
Knows(x, y) /

- J

at least two people

@vev, that does not mean that we should immedim

start writing out something about a pair of people.
Remember - we should only infroduce gquantifiers when

g R\ we immediately need fthem, and it's not clear fhat
Available Predicates: we need fo star falking about fhese fwo people

Person(x) \ et
Knows(x, y)

- J

Everyone knows at least two people

4)

Available Predicates: Instead, let's look at fthe overall structure of This

sfatement and see what it is Thal we've trying fo say.
Person(x)

Knows(x, y)

- J

Every person x knows at least two people y and z

4)

Available Predicates: As usual, lef's start by infroducing some variables so

fhat we can keep track of who we're falking about,
Person(x)

Knows(x, y)

- J

Vx. (Person(x) —
X knows at least two people y and z
)

4)

Available Predicates: We can then partially translate this statement using

the technigues we've seen so far,
Person(x)

Knows(x, y)

- J

Vx. (Person(x) —
X knows at least two people y and z
)

4)

Available Predicates: Now, we need to express the idea thal x knows fwo

people x and y.
Person(x)

Knows(x, y)

- J

Vx. (Person(x) —
X knows at least two people y and z

)

-

~

Available Predicates:

o

Person(x)
Knows(x, y)

There are a couple of ways to do i, and since we've
got fime, we'll do it in two different ways.,

Vx. (Person(x) —
X knows at least two people y and z

)

4)

Available Predicates:

Person(x)
Knows(x, y)

- J

| certain properfies,

/Pvevious\%, we Talked about working with pairs TR
a universally—quantified setfing. Here, though, this
parficular pair is going To be existentially quantified,
since we're saying that there exist two people with

//

ey

Vx. (Person(x) —
there are two people y and z that x knows

)

-

~

Available Predicates:

o

Person(x)
Knows(x, y)

IT might be easier to see that if we rewrite Things like
This,

Vx. (Person(x) —
there are two people y and z that x knows

)
e ™\ Thinking back fo our double for loop infuition, lef's see
Available Predicates: it we can translate this statement by nesting some
exisfential stfatements inside of one anothier,

Person(x) N
Knows(x, y) /

- J

Vx. (Person(x) —
there is a person y that x knows and a different
person z that x knows.

)
a4)
Available Predicates:
|: Let's begin by rewriting the English like This, :l
Person(x)
Knows(x, y) Va

- J

Vx. (Person(x) —
Jy. (Person(y) A Knows(x, y) A
there is a different person z that x knows

)
)
4 I
Available Predicates:
We can now make some progress translafing this,
Person(x)
Knows(x, y) J

- J

Vx. (Person(x) —
Jy. (Person(y) A Knows(x, y) A
there is a different person z that x knows

)
)
_—
a4 N\ We can then finish up the rest of this translation by
Available Predicates: franslafing this blue part in the middle, Buf fhat
shouldn't be too bad:

Person(x) N
Knows(x, y) 4

- J

Vx. (Person(x) —
Jy. (Person(y) A Knows(x, y) A
Jdz. (Person(z) A Knows(x, z2) A
Z Is a different person from y

)

4)
Available Predicates: |:

Here's one way To do i,
Person(x)

Knows(x, y)

- J

Vx. (Person(x) —
Jy. (Person(y) A Knows(x, y) A
Jdz. (Person(z) A Knows(x, z2) A

-

)
)
\
Available Predicates:
Person(x)
Knows(x, y)
/

o

)

Z Is a different person from y

The last step is to say that 2z and y aren't the same
person,

Vx. (Person(x) —
Jy. (Person(y) A Knows(x, y) A
Jdz. (Person(z) A Knows(x, z2) A

-

~

Available Predicates:

o

Person(x)
Knows(x, y)

)

Z Is a different person from y

Even Though we didn't explicitly list it in our list of
predicates, remember that first—order logic has the
equality predicate built into it, so we're always allowed fo

sfate fthat fwo Things are the same or are different,

N—

ey

Vx. (Person(x) —
Jy. (Person(y) A Knows(x, y) A
Jz. (Person(z) A Knows(x, z) A 2 # y)

)

4)

Available Predicates:

Person(x) E Here's one way to do that,

Knows(x, y)

- J

Vx. (Person(x) —
Jy. (Person(y) A Knows(x, y) A
Jz. (Person(z) A Knows(x, z) A 2 # y)

)

4)

Available Predicates:

E And hey: We're done:

Person(x)

Knows(x, y)

- J

Jy.
)

-

~

Available Predicates:

o

Person(x)
Knows(x, y)

(Person(y) A Knows(x, y) A
Jz. (Person(z) A Knows(x, z) A 2 # y)

/
Notice how we're using a pair of nested existential

guantifiers To express the idea that there's a pair of
people with specific properfies,

N— "

—

Jy. (Person(y) A Knows(x, y) A
Jz. (Person(z) A Knows(x, z) A 2 # y)

)
~
e ™\ Hopetully, this seems familiar, since it's closely related
Available Predicates: fo the analogous doubly—nested gquantifiers we saw
when talking about pairs of pancakes,

Person(x)
Knows(x, y) /

- J

Jy. (Person(y) A Knows(x, y) A
Jz. (Person(z) A Knows(x, z) A 2 # y)

)
e ™\ JusT as we could write *any pair of pancakes” in two
Available Predicates: ways, we can write *some pair of ditferent people” in
Two ways,

Person(x) N
Knows(x, y) //

- J

Jy. (Person(y) A Knows(x, y) A
3z. (Person(z) A Knows(x, z) A 2 # y)
)

Jy. dz. (Person(y) A Person(z) ANz #y A
Knows(x, y) AN Knows(x, z)

)
/ . .
a4 N\ Here's The alternafive approach, Here, we infroduce
Available Predicates: the quanfifiers tor y and z at the same fime, fhen
constrain y and z with precondifions af the same fime,

Person(x) \
Knows(x, y) /

- J

Jy. (Person(y) A Knows(x, y) A
3z. (Person(z) A Knows(x, z) A 2 # y)
)

Jy. dz. (Person(y) A Person(z) ANz #y A
Knows(x, y) AN Knows(x, z)
)

Mhese two approaches are completely equivalent, and boTh
of them are correct, As with quantifying over pairs
4) using Vv, it's a good idea to get comfortable with
Available Predicates: guantitying over pairs using 3 with both of these

Person(x) approaches,
Knows(x, y)

- J

Jy. (Person(y) A Knows(x, y) A
3z. (Person(z) A Knows(x, z) A 2 # y)
)

Jy. dz. (Person(y) A Person(z) ANz #y A
Knows(x, y) AN Knows(x, z)

)
On Problem set Two, you'll gef fo consider a variation
on this problem: how would you express the idea that
4) This person x knows exactly fwo people? That's a trickier
Available Predicates: proposition, but (hypothetically speaking) you may want
Person(x) " To use this basic setup as a starting point,
Knows(x, y) ‘//

- J

~ N
There's one last topic 1'd like to speak about in this

quide, and that's what happens when you start talking
about sefs and set theory in first—order logic,

N— \//

—~ —~

ven if you don't find yourselt talking about set theory

much in first—order logic, the lessons we'll learn in fhe
course of exploring fhese sorts of translations are

extremely valuable, especially when it comes to checking

your work,
\ \//

Lef's imagine that we have fhe set of predicates over to
N\ the left. We can say that something is a set, that one
Available Predicates: thing is an element of something else, that something
Set(x) - is an integer, and that something is negative,
X €Y //
Integer(x) iy
Negative(x)

NG /

The set of all natural numbers exists

\
Available Predicates: How might we translate this statement info ﬁvsT—ovolev:l
Set(x) logic?
X Ey /
Integer(x) iy
Negative(x)

NG /

The set of all natural numbers exists

Available Predicates:\ This stafement is, in many ways, quite different from the
ones we've seen so far.,
Set(x)
XEy
Integer(x) -
Negative(x)

NG /

The set of all natural numbers exists

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

First, The statement doesn't seem 1o look anything like

The Aristotelian forms that we saw earlier. Instead,

/

T just says that something exists.,

N— "

ey

The set of all natural numbers exists

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

Second, this statement refers fo a specific thing - the

sef of all nafural numbers - and so i1's not exactly

/

clear how we'd actually translate this into logic.,

N— "

ey

The set of all natural numbers exists

~ N
\ 1t you encounter a stafement like this one, which asks
Available Predicates: you to show that something exists, it offen helps 1o
reframe the statement fo translate in a different light,

Set(x) U
X EY /
Integer(x) iy
Negative(x)

NG /

The set of all natural numbers exists

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

Rather than saying ‘this specific thing exists..”

/

//

ey

There is a set that is the set of all natural numbers

~ TN

Available Predicates: .we can say something like this - that of the sefs thaf

are out there, one of them has some special properties.
Set(x) -
X EY /
Integer(x) iy
Negative(x)

NG /

There is a set that is the set of all natural numbers

. . .\
\ This looks a lot more like the forms that we saw earlier,
Available Predicates: so we can sfart fo franslate it into first—order logic
using similar fechnigues,

Set(x) N
XEYy /[
Integer(x) o
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)
Available Predicates:\
Eeve's one way Thal we can get this translation sTavTele
Set(x)
Xey /
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)
Available Predicates: SO now we V\@GOl TO ﬁVld a way ‘\'O PW] dOWV] T\ne facT
That S is the set of all natural numbers.
Set(x)
X Ey
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)
Available Predicates:\ To do so, let's fake a few minutes to think about
how we might do that,
Set(x)
XEYy
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

ﬁwe've qoing fTo say that S is the set of all ma’fwa\\

numbers, we're probably going to need to find some

way To talk about ifs elements, Affer all, sets are
uniguely defined by their elements, so if we want to say

That we have a set with a certain property, we can

/

\olo so by sauing That it has The right e\emejﬁs./

—

3S. (Set(S) A
S Is the set of all natural numbers

)
Available Predicates:\ We're not sure how we're going fo do that, buf at least
we know 1o keep an eye ouf for that,
Set(x)
XEYy
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)
Available Pr‘edicates;\ NSXT, we meeol fo ‘F\V\Ol a Way fo Say that SOM@‘H’\W\Q S
a natural number,
Set(x)
XEYy
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)
We have the ability o say that something is an infeger
N\ or that something is wnegative, and fhat might come
Available Predicates: in handy - the natural numbers are the integers
That aren't negative:

Set(x) N
XEY //
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)
So even it we have no idea where we're going right now,
N\ we al least know that (1) we want fo say something about
Available Predicates: the elements of s, and (2) we've going to fry fo say
Set(x) wﬂumq about how They're infegers thal aren't negative,
X €y //
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)
~ TN
\ Rather fThan just show you the final answer, let's see how
Available Predicates: not to do fhis,
Set(x)
X €y //
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers
)

—~ TN
\ As before, 1'm going 1o put up the emergency warning

Available Predicates: flags indicating that we've doing something wrong here.,
Set(x) N—
Set(x //
Integer(x) y
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

~

—~

Let's fry an initial approach, What does it mean for §

/

N—

fo be the set of all nafural numbers?

//

ey

3S. (Set(S) A
S contains all the natural numbers

)
Here's a reasonable — but incorrect - way of thinking
N\ about it, If you don't see why this is incorrect, don't
Available Predicates: worry: I1's subtle, which is precisely why we're faking
The fime to go down this route,

Set(x) —
X €y //
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S contains all the natural numbers

)
Available Predicates:\ Now, how might we translate this vred statement into
first—order logic?
Set(x)
XEYy
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
every natural number is an element of S

)
Available Predicates: Again, let's change up The OVOIGViVlQ of the EWQ\iSh To
expose a bit more sfructure.
Set(x)
XEYy
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx. (x is a natural number —
X IS an element of S

)
)
Available Predicates:\ This matches one of our nice Arvistotelian torms, so we
can rewrite it like this,
Set(x)
XEYy
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx. (x is a natural number —

X €S
)
)
Available Predicates:\ We can clean up the consequent of that implicafion (fThe
part that's implied) using The predicates we have available,
Set(x)
XEYy
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx. (x is an integer and x isn't negative —

X €S
)
)
N
\ As tor the antecedent - as we saw earlier, the
Available Predicates: natural numbers are the integers thal aren't negative,
so we can say something like this,

Set(x) N
X Ey /[
Integer(x) o
Negative(x)

NG /

3S. (Set(S) A
Vx. (Integer(x) N ~Negative(x) —

X €S
)
)
Available Predicates:
We can then franslate that into logic like this, Doner .ish

Set(x)

xey /
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx. (Integer(x) N ~Negative(x) —

X €S
)
)
~
\ So it seems like we're done, but we still have Those
Available Predicates: big red warning signs everywhere, Why doesn't this
work?
Set(x) \
XEy /
Integer(x) o
Negative(x)

NG /

3S. (Set(S) A
Vx. (Integer(x) N ~Negative(x) —

X€ES
)
)
~ TN
™\ well, fundamentally, the way This stafement works is by
Available Predicates: saying ‘There is some set S that is the set of all
natural numbers,

Set(x) N
e y //
Integer(x) o
Negative(x)

NG /

3S.

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

~

—~

Since this is an existentially—quantified statement, it's
frue if we can find a choice of § that makes it frue.

/

N—

//

—

3S.

~ N
\ We've tried To structure this statement with the intent
Available Predicates: that, specifically, the only choice of § That will work
Set(x) - should be N, the set of all nafural numbers.,
X €y —
Integer(x) iy
Negative(x)

NG /

3S.

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

~

—~

It we can make this statement frue without choosing
S fo be the set ot all nafural numbers, then we haven't

/

N—

actually stated that N exists,

//

ey

3S. (Set(S) A
Vx. (Integer(x) N ~Negative(x) —

)

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

—~

Unfortunately, it is entirely possible fo choose a set

besides N that makes this formula true.

X €S
-~
\
N—
%

//

ey

3S. (Set(S) A
Vx. (Integer(x) N ~Negative(x) —

X€ES
)
)
Choose S = R.
. N
Available Predicates:
Specifically, what if we choose § to be the set R?
Set(x)
Xey /
Integer(x) iy
Negative(x)

NG /

Set(S)

Choose S = R.
|)
Available Predicates:
|: That means that s is definitely a set. :l

Set(x)

xey /
Integer(x) iy
Negative(x)

NG /

Vx. (Integer(x) N ~Negative(x) —

X€e€S
)
Choose S = R.
Available Predicates:\ .and this part of the formula is frue: every nonnegative
infeger is contained in &,

Set(x)

X EY
Integer(x) iy
Negative(x)

NG /

Vx. (Integer(x) N ~Negative(x) —
X €S

)

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

Choose S = R.

This means That the stafement we've written doesn't
say ‘The set of all natural numbers exists.” It saus
“there is some set thal confains all the natural numbers,”

/

which is similar, but not the same thing.

N— //

——

Vx. (Integer(x) N ~Negative(x) —
X €S

)

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

Choose S = R.

ﬁdamevﬁa\\%, The issue with this translation is that \/m

put on a set of minimum requirements on S, notf a set of
exact requirements, As a result, it's possible to make
This formula True with a choice of § that has some, but
not all, of the properties of N, We're going fo need

/

\To rework the formula to correct that oleﬁci/emc%./

—

Vx. (Integer(x) N ~Negative(x) —
X €S

)

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

Choose S = R.

~

—~

To do so, lef's go back in time to the last point where

/

N—

everything was working correctly..

//

ey

3S. (Set(S) A
S Is the set of all natural numbers

)
Available Predicates:\ |: :l
.. which was this point here:
Set(x)
X€y /
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)
Okay, so we know that just sauing *S contains all the
\ natural numbers” isn't going To work, because other
Available Predicates: sets besides R can also contains all the natural
Set(x) . numbers.,
X €y //
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)
Available Predicates:\ |: :l
So what ofher approaches can we fake?
Set(x)
Xey /
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)
I'm going To show you another approach Thal doesn't
\ work, which is a common sfrafegy thal we see students
Available Predicates: fake affer they vealize that fhe previous approach
is incorrect,

Set(x) N
XEY //
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)
Available Predicates:
Set(x) [Agaln, up 4o The warnng signs! j
X€EYy Ve
Integer(x) —
Negative(x)

- /

3S. (Set(S) A
S Is the set of all natural numbers

)

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

(atgbe we should Think about this differently, The reason
that we could gef away with choosing R for our set S

was that our formula said *S has To have at least fhese
elements.” What if we try a different factic and say

/

9
" that S has to have at most these e\emevﬁ/s/

—

3S. (Set(S) A
the only elements of S are natural numbers

)
Available Predicates:\ That is, what if we fry replacing the previous blue
stafement with this ved stafement?
Set(x)
XEYy
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
the only elements of S are natural numbers

)
Available Predicates:\ I: :l
This isn't fthe same thing as betore. do you see why?
Set(x)
X€EYy /
Integer(x) iy
Negative(x)

_ /

3S. (Set(S) A
the only elements of S are natural numbers

)
Available Predicates: Given That if's different, let's see if we can tfranslate
this into first—order logic,
Set(x)
X Ey
Integer(x) iy
Negative(x)

_ /

3S. (Set(S) A
every element of S Is a natural number

)
Available Predicates:\ Rewording this statement and infroducing some variables
helps make clearer what we've going to do next,
Set(x)
XEy
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx.(x €S -
X IS a natural number

)
)
Available Predicates:\ This statement matches one of our forms, so let's
gqo and translate if,
Set(x)
X Ey
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx.(x €S -
X IS a natural number

)
)
Available Predicates:\ And, since we've seen earlier how to express the idea
That x is a natural number..
Set(x)
X EY
Integer(x) o
Negative(x)

NG /

3S. (Set(S) A
Vx.(x €S -
Integer(x) A ~Negative(x)

)
)
Available Predicates:
.we can complete our translation like this,

Set(x)

Xey /
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx.(x €S -
Integer(x) A ~Negative(x)
)

\

Available Predicates:
So we're doner But is it correct?
Set(x)

XEY S
Integer(x)

Negative(x)

NG /

3S. (Set(S) A
Vx.(x €S -
Integer(x) A ~Negative(x)

)
)
As before, we should check to make sure that fhe only
N\ way this stafement can be made frue is by picking S fo
Available Predicates: be fThe sef of all natural numbers, Is that really the
case’?
Set(x) N— //
XEY
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx.(x €S -
Integer(x) A ~Negative(x)

)

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

/

Choose S = {137}.

[Uwfovfuma’(e\%, no., What it we pick fhis choice tor S?:l

Vs

ey

Set(S)

Choose S = {137}.

Available Predicates:\
|: Well, it's a sef.
Set(x)
X€Ey
Integer(x)
Negative(x)

NG /

Vx.(x €S -
Integer(x) A ~Negative(x)

)
Choose S = {137}.
|) | | o
Available Predicates: . and This stafement is frue: every element of S is indeed
a nafural number,

Set(x)

X EY
Integer(x) Ny
Negative(x)

NG /

Vx.(x €S -
Integer(x) A ~Negative(x)

)

Choose S = {137}.

So our Translation isn't correct - even if fhere is no
\ set of all natural numbers, we can still make the formula
Available Predicates: true by picking some ofher set. in this case, any sef
Set(x) _ that happens to only contain natural numbers.,
X €Y //
Integer(x) iy
Negative(x)

NG /

Vx.(x €S -
Integer(x) A ~Negative(x)

)

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

Choose S =0

/

N—

Inferesting, we could have also chosen S - @ as a
counterexample, Then this inner statement happens to
be vacuously frue because there are no elements of ¢

fo speak of:

//

ey

3S. (Set(S) A
Vx. (Integer(x) N ~Negative(x) —
X €S
)

)

3S. (Set(S) A
Vx. (x €S -
Integer(x) A mNegative(x)
)

which isn't correct.

Set(x)
XEy
Integer(x)
Negative(x)

NG /

Available Predicates:\ |:So here are our Two affempted franslations, each of

3S. (Set(S) A
Vx. (Integer(x) N ~Negative(x) —

X€ES
)
)
3S. (Set(S) A
Vx. (x €S -
Integer(x) A mNegative(x)
)

wrong in complementary ways,

Available Predicates:\ Em’(evesfmq\%, alfhough each of them is wrong, they've

Set(x)
XEy
Integer(x)
Negative(x)

NG /

3S. (Set(S) A
Vx. (Integer(x) N ~Negative(x) —
X €S

)

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

. \
Our first statement was wrong because it lef us choose

sets that had all the nafural numbers, plus some other
things That shouldn't be there,

/

N— "

ey

3S. (Set(S) A
Vx. (Integer(x) N ~Negative(x) —

X €S
)
)
~ TN
\ However, nofice that we can't pick an S thal misses
Available Predicates: any nafural numbers, because the inside says that all
the natural numbers should be there,

Set(x) \
X EY /
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx.(x €S -
Integer(x) A ~Negative(x)

)

™\ This second statement was incorrect because it let us
Available Predicates: choose sets S with foo few elements, since all it required
was thal elements thal were present were natural numbers,
Set(x) e

X€EY —
Integer(x) iy
Negative(x)

NG /

1S. (Set(S) A

Vx.(x €S -
Integer(x) A ~Negative(x)
)
)
~
\ However, note that this formula doesn't let us choose
Available Predicates: a sef S that contains anything that's not a natfural number,
since it requires everything in S To be a nafural number,

Set(x) L
X EY /
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx. (Integer(x) N ~Negative(x) —
X €S
)

)

3S. (Set(S) A
Vx. (x €S -
Integer(x) A mNegative(x)

)
)
Available Predicates:
In a sense, you can think of our franslations this way..

Set(x)

XEY Va
Integer(x) iy
Negative(x)

NG /

Vx. (Integer(x) N ~Negative(x) —
) XE0 (N C S)

3S. (Set(S) A
Vx. (x €S -
Integer(x) A mNegative(x)

)

every natural number be in S,

Gvailable Predicates:\ ‘ This first part says *N < S, since it requires that

Set(x)
XEy
Integer(x)
Negative(x)

NG /

Vx. (Integer(x) N ~Negative(x) —
) XE0 (N C S)

Vx.(x €S - (S € N)
Integer(x) A ~Negative(x)

)

Available Predicates:\ This second parf saus S € N, since it requires that
every element of S be a nafural number,
Set(x)

X€Ey
Integer(x)
Negative(x)

NG /

Vx. (Integer(x) N ~Negative(x) —
) XE0 (N C S)

Vx.(x €S - (S € N)
Integer(x) A ~Negative(x)

)

, , \ In other words, each individual constraint doesn't
Available Predicates: guaranfee that § has o be N, but the fwo statements

Set(x) collectively would require that § - N
X€Ey
Integer(x)
Negative(x)

NG /

Vx. (Integer(x) N ~Negative(x) —
) XE0 (N C S)

Vx.(x €S - (S € N)
Integer(x) A ~Negative(x)

)

Available Predicates:\ Let's wind back fThe clock and see it we can use this
to our advantage.
Set(x)

X€Ey
Integer(x)
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)
Available Predicates:\ |: :l
So This is the last point where we had the right idea,
Set(x)
Xey /
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
S Is the set of all natural numbers

)

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

~

—~

The problem was that in The last fwo cases, we kept
mistranslating this blue statement, which got us the wrong

/

N—

anNswer ,

//

ey

1S. (Set(S) A
SCNA
NES

\

Available Predicates: |:

Set(x)

Xey /
Integer(x) iy

Negative(x)

NG /

So what it we franslate it like this? :l

1S. (Set(S) A
SCNA

NS

\

Available Predicates: We can then shap in the two pav’(s of the tormulas
That we built up earlier..
Set(x)
XEY
Integer(x) iy
Negative(x)

NG /

1S. (Set(S) A

Vx.(x €S -
Integer(x) A ~Negative(x)
) A
Vx. (Integer(x) N ~Negative(x) —
X €S
)
)
|)
Available Predicates:
|: Wlike this,
Set(x)
X EyY
Integer(x)
Negative(x)

NG /

1S. (Set(S) A

Vx.(x €S -
Integer(x) A ~Negative(x)
) A
Vx. (Integer(x) N ~Negative(x) —
X €S
)
)
o
Available Predicates:
|: And heyr This actually works: :l
Set(x)
xey /
Integer(x) iy
Negative(x)

NG /

Vx. (x €S -
Integer(x) A ~Negative(x)

)
Available Predicates:\ It we choose an S that contains something it shouldn'T,
This part will catch if.
Set(x)
XEYy
Integer(x) iy
Negative(x)

NG /

Vx. (Integer(x) N ~Negative(x) —

X€ES
)
Available Predicates:\ .and if we pick an S that misses something iT was
supposed to contain, this part catches if:
Set(x)
XEYy
Integer(x) ‘
Negative(x)

NG /

1S. (Set(S) A

Vx.(x €S -
Integer(x) A ~Negative(x)
) A
Vx. (Integer(x) N ~Negative(x) —
X €S
)
)
o
Available Predicates:
|: So in that sense, we have a working tormula: :l
Set(x)
xey /
Integer(x) iy
Negative(x)

NG /

1S. (Set(S) A

Vx.(x €S -
Integer(x) A ~Negative(x)
) A
Vx. (Integer(x) N ~Negative(x) —
X €S
)
)
|)
Available Predicates:
|: As a final step, fhough, we can clean this up a bit, :l
Set(x)
xey /
Integer(x) iy
Negative(x)

NG /

XxX€eES-
Integer(x) A ~Negative(x)

Integer(x) A ~Negative(x) —

X€ES
Available Pr‘edicates;\ Look at ﬂ'\ese fwo iYYlP\icaﬁOVlSo
Notice anything about them?
Set(x)
XEYy
Integer(x)
Negative(x)

NG /

XxX€eES-
Integer(x) A ~Negative(x)

Integer(x) A ~Negative(x) —

X€ES
Available Predicates:\ Except for fThe fact that the anfecedent and the
consequent have been swapped, fhey're the same:
Set(x)
X EY
Integer(x) iy
Negative(x)

NG /

XxX€eES-
Integer(x) A ~Negative(x)

Integer(x) A ~Negative(x) —

X €S
Available Predicates:\ And hey. don't we have a special symbol fo say that
A - B and fhat B - A?
Set(x)
XEy
Integer(x) iy

Negative(x)

NG /

1S. (Set(S) A

Vx.(x €S -
Integer(x) A ~Negative(x)

) A

Vx. (Integer(x) N ~Negative(x) —
X €S

)

Available Predicates:\ |: So as a final step, let's take this tormula and

rewrite iT using fhe biconditional connective,
Set(x)

X EY
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx. (x € § « Integer(x) N ~Negative(x))

)
Available Predicates:\ |: :l
That ends up looking like this,
Set(x)
X€EYy /
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx. (x € § « Integer(x) N ~Negative(x))

)
Available Predicates:\ |: :l
This single biconditional contains everything we need,
Set(x)
Xey /
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx. (x € § « Integer(x) N ~Negative(x))

) -
Available Predicates:\ In the forwards direction, it says ‘everyfhing in S needs
fo be a natural number,”
Set(x)
X€Ey
Integer(x) -
Negative(x)

NG /

3S. (Set(S) A
Vx. (x € § « Integer(x) N ~Negative(x))

S N

Available Predicates:\ In the reverse divection, it says ‘every natural number
needs 1o be in S,
Set(x)
XEYy
Integer(x) iy
Negative(x)

NG /

3S. (Set(S) A
Vx. (x € § « Integer(x) N ~Negative(x))

)

\

Available Predicates:

Set(x)
XEy
Integer(x)
Negative(x)

-

7~ Geverally, if you've trying To write a statement N\

in first—order logic that says that some set exists (which,
hypothetically speaking, might happen sometime soon),
you might find yourself using a biconditional fo pin down
the elements of the set, I1's an easy way fo say

/

N\ The sef contains precisely these e\emevﬁs/./

ey

~

SN—

—~

Wow! We've covered a fon in this guide., Before we
wrap up, lef's briefly vrecap the major themes and ideas

from whal we've seen here,

//

—

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) = Q(x)) Ix. (P(x) A Q(x))

“No Ps are Qs.” “Some Ps aren't Qs.”

Vx. (P(x) » =Q(x)) Ix. (P(x) A ~Q(x))

" F

irst, we saw These four basic statement building b\ooks,\

These are idiomafic expressions in first—order logic - the same
way That a for loop over an array is idiomatic in most
programming languages - and are exfremely useful in

assembling more complex statements,
N I/

—

“All Ps are Qs.” “Some Ps are Qs.”

Vx. (P(x) » Q(x)) Ix. (P(x) A QX))
“No Ps are Qs.” “Some Ps aren't Qs.”
Vx. (P(x) - = Q(x)) Ix. (P(x) A =Q(x))

Vx. (Person(x) -
X loves at least one corgi y
)

— ™~

We saw thal franslating things incrementally, going one

sfep at a fime and judiciously rewriting the English, is

a reliable way to end up with good franslations. Plus,
it sidesteps a fon of classes of mistakes,

——

Vx. (Pancake(x) — Vx. Vy. (Pancake(x) A Pancake(y) —
Vy. (Pancake(y) - TasteSimilar(x, y)
TasteSimilar(x, y))
)

E/\/e saw how fo quanfify over pairs of things, and saw

that there are mulfiple ways of doing so.

Vx.(x €S -
Integer(x) A ~Negative(x)

)

Choose S = {137}.

~ N

We saw thal we can check our work by plugging in specific
values and seeing whether they work they way we expect
Them To work,

N— //

ey

3S. (Set(S) A
Vx. (x € § « Integer(x) N ~Negative(x))
)

And, finally, we saw where bicondifionals come from,
especially in set theory confexts,

—

Hope this helps:

Please feel free fo ask

™~

guestions if you have them,

- TN
Did you find this usetul? 11

so, let us know: We can go
and make more gquides like These,

N— \//

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299

